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Introduction 

What is VPP?   Is it a software router? A virtual switch? A virtual network function? Or, 

something else? In fact it is all of the above and a whole lot more. It is a modularized and 

extensible software framework for building bespoke network data plane applications. And 

equally importantly, VPP code is written for modern CPU compute platforms (x86_64, ARMv8, 

PowerPC, to name a few), with a great deal of care and focus given to optimizing the software-

hardware interface for real-time, network I/O operations and packet processing.  

 

VPP takes advantage of CPU optimizations such as Vector Instructions (e.g. Intel® SSE, AVX) 

and direct interactions between I/O and CPU cache (e.g. Intel® DDIO), to deliver best in class 

packet processing performance. The result is a minimal number of CPU core instructions and 

clock cycles spent per packet - enabling Terabit performance using the latest Intel® Xeon® 

Scalable Processor (processor details found at the end of this paper). 

 

The Most Efficient on the Planet! - VPP is the most efficient software packet processing engine 

on the planet. Imagine running it in your private cloud, or in many public clouds all around the 

planet. Flipping fast networking software running in the cloud and ruling the Internet services. 

Imagine that…   Well, you actually can do a bit more than just imagine, you can actually use it, 

extend it, and integrate it into your Internet service life. You can build a physical or virtual switch, 

router, a load balancer, a NETFLOW probe, an IPv4 as a service VNF... Pretty much anything 

that manipulates packets or implements protocols. The world is your oyster.  

 

 
Figure 1. A Universal Terabit Software Network Platform. 
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Culture shift 

Traditionally routers were built with a tightly coupled data plane and control plane. Back in the 

80s and 90s the data plane was running in software on commodity CPUs with proprietary 

software. As the needs and desires for more speeds and feeds grew, the data plane had to be 

implemented in ASICs and FPGAs with custom memories and TCAMs. While these were still 

programmable in a sense, they certainly weren't programmable by anyone but a small handful 

of people who developed the hardware platform. The data plane was often layered, where 

features not handled by the hardware data plane were punted to a software only data path 

running on a more general CPU. The performance difference between the two were typically an 

order or two of magnitude. Software being slower, of course! 

 

In the 2000s there was a shift towards a larger split between control plane and the data plane, 

where the data plane would have a fixed API, like Openflow. That still didn't make the data 

plane very flexible, but at least the data plane was more or less decoupled from the control 

plane. 

 

The latest developments are one of extreme modularity. Hardware is becoming much more 

programmable and we see the arrival of P4, a domain specific language for the purpose of 

programming the network data plane. We are also seeing complete decoupling of the control 

plane, both in function and in locality. 

 

This decoupling requires a shift in thinking of how a network and network functions are 

managed. Take the example of the "IPv4 as a service" VNF, a simple function that takes an 

IPv4 packet from the Internet, does a table lookup and encapsulates the packet in an IPv6 

header and sends it out to an end-user. Does it make sense that this simple network service 

should have a full CLI, support SNMP, and every other control plane function we are familiar 

with for traditional routers? Probably not.  The model of managing it should probably be closer 

to how you manage and operate an application daemon, e.g. BIND or Apache httpd. 

 

It has always been possible to do pure software forwarding and to build a software router. Some 

of us remember from back in the late 80s, that this was what the universities did to serve their 

main Internet connection of a whopping 64 kbps line. What has changed over the last few years 

is that you can now get real performance from software routing running on commodity 

hardware.  

 

While you cannot expect a router with tens or hundreds of 100GbE ports and multi-terabit 

performance, we anticipate FD.io VPP running on an industry standard 2RU server, breaking 

the 1Tbps throughput boundary for the networking data plane. This is made possible by the new 

Intel® Xeon® Processor Scalable family, bringing architectural improvements and PCIe 

bandwidth increase while decreasing overall cycles per packet. VPP is here to take advantage 

of this increased network I/O as it has been starving for more I/O fan-out with current commodity 

servers for a while, no VPP code change required. Read on to find out more... 
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Architecture 

30,000 feet view 

VPP is a data plane, a very efficient and flexible one. It consists of a set of forwarding nodes 

arranged in a directed graph and a supporting framework. The framework has all the basic data 

structures, timers, drivers (and interfaces to driver kits like DPDK), a scheduler which allocates 

the CPU time between the graph nodes, performance and debugging tools, like counters and 

built-in packet trace. The latter allows you to capture the paths taken by the packets within the 

graph with high timestamp granularity, giving full insight into the processing on a per-packet 

level. 

 

VPP has a plugin architecture. Plugins are first class citizens, and are treated just like modules 

embedded directly in VPP. Plugins are typically forwarding nodes serving a particular function, 

but can also be a driver, or another CLI or API binding. Plugins can insert themselves at various 

points in the graph, depending on their function and enable fast and flexible development of new 

and bespoke network or service functions leveraging existing VPP nodes and graph as a stable 

packet processing platform. One can focus on the new functionality and leverage for free what 

already works, and works very well. 

 

The input node polls (or is interrupt driven) an interface's RX queue for a burst of packets. It 

assembles those packets into a vector or a frame per next node, e.g. it sorts all IPv4 packets 

and passes those to the ip4-input node, the Ipv6 packets into the ip6-input node and so on. 

When the ip6-input node is scheduled, it takes its frame of packets and processes them in a 

tight dual loop (or quad-loop) with prefetching to the CPU cache to achieve optimal 

performance.  This makes more efficient use of the CPU cache by reducing misses, and scales 

efficiently for larger CPU caches. The ip6-input node pushes the various packets onto another 

set of next-nodes, e.g. error-drop if validation checks failed, or most typically ip6-lookup. The 

frame of packets move like a train through the system until they hit the interface-output node 

and are shipped onto the wire. 

 



 

 5 

 
Figure 2. VPP Architecture: Packet Processing Graph of Nodes. 

Processing a vector at a time per network function has several benefits.  

 

- From a software engineering perspective, each node is independent and autonomous.  

 

- From a performance perspective, the primary benefit is derived from optimizing the use 

of the CPU's instruction cache (i-cache). The first packet heats up the cache, and the 

rest of the packets in the frame (or vector) are processed "for free". Here, VPP takes full 

advantage of CPU’s super scalar architecture, enabling packet memory loads and 

packet processing to be interleaved for a more efficient processing pipeline. Compare 

that with a scalar packet processing approach, where one packet would be processed 

from input to output. The instruction cache would overflow, and you would get a 

significant amount of i-cache misses per packet.  

 

- Similarly, VPP is optimized to take advantage of CPU’s speculative execution. 

Secondary performance benefits are gained from speculatively re-using the forwarding 

objects (like adjacencies and IP lookup tables) between packets, as well as pre-

emptively loading data into the CPUs local data cache (d-cache) for future. This efficient 

use of the compute-hardware allows VPP to exploit fine-grained parallelism. 

 

The graph processing nature of VPP represents a loosely coupled, highly cohesive software 

architecture. Each graph node uses a “frame” as the atomic unit of input and output. This 

provides the loose-coupling. The architecture is cohesive as common functions are grouped into 

each graph node based on desired functionality.  

 

Nodes in the graph are fungible and when combined with VPP’s ability to support the loading of 

“plugin” graph nodes at runtime, means new and interesting features can be prototyped and 

rapidly developed without forking and compiling a bespoke version of the source. 
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Developer's delight 

VPP is written completely in C. It runs in user space and is very self-contained. If you have tried 

to develop networked applications using BSD sockets and interacting with the Linux kernel, you 

will find writing network functions in VPP a blast. There is no awkward API to go through to 

access various headers and parts of a packet. "Here's a pointer to the start of the IP header, go 

and have fun", that's our attitude.  

 

VPP provides a plethora of data structures to help you; Hashes, Pools, Dynamic arrays, LPM, 

Timer wheels. There is a lot of templates and patterns to base new plugins or forwarding nodes 

on. The data structures generally deals with indexes, so the developer is spared against 

maintaining pointers. 

 

Fundamental to VPP’s software design is the notion of composability. Take a relatively simple 

idea of a vector. Optimise it, harden it, provide useful functions for memory management and 

usability then build on it. Vectors with Bitmaps become Pool structures. This collection of utility 

infrastructure components (in src/vppinfra) combined with the VPP application harness for node 

utilities, threading support etc (src/vlib) form the foundation of the VPP networking data plane 

application (src/vnet).  

 

Potentially a developer could leverage (src/vppinfra) and (src/vlib) for completely new and 

interesting use-cases outside of networking, which is the point… VPP rests on an architectural 

foundation of software composability. 

 

It is a run to completion system, and it generally avoids locking or any complex mechanisms for 

thread synchronisation. 

 

VPP can run and be tested on a laptop in isolation without any requirement for external 

interfaces. 

Control plane and data plane separation 

Drawing the line between what goes in the control plane and what belongs to the data plane 

isn't always easy. Do protocols used for address resolution belong in the data plane for 

example? In VPP they do, but that's an engineering trade-off. 

 

Architecturally we want the VPP data plane to be as generic as possible and be purely driven by 

an API. A lot of the complexity in control planes come from the amount of "glue" required to 

couple the various components together. Imagine a simple function like DHCPv6 PD 

(RFC3633). A DHCPv6 client must initiate PD on an interface, whenever the DHCP process 

acquires a set of IPv6 prefixes, these have to be subnetted and addresses assigned to 

downstream interfaces, routing tables have to updated, and perhaps other component notified 

(e.g. a routing protocol). All this complexity and tight coupling between components is 

something we want to avoid in the data plane. These functions can still be tightly integrated into 
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the system, e.g. through a plugin, where the "glue" code can be written in a more high level 

language like Lua or Python, and the various components are programmed through their 

respective APIs. 

The VPP control plane interface 

VPP offers a high performance binary API using shared memory, a CLI and support for 

rudimentary configuration files. The binary API is written in C and supports language bindings 

for Python, Java, Lua and C, with development work underway on GO and C++.  

 

The C API can do upwards of 500Kmsgs/s while Python is an order of magnitude slower. 

Integration with the host stack 

When a host application wishes to communicate, it typically uses POSIX sockets to do so. The 

fact that this is ultimately implemented in a TCP/UDP/IP/Ethernet stack is a networking 

implementation choice. VPP recently introduced a shared memory FIFO mechanism that allows 

applications on the same VPP instance to communicate directly without the networking 

overhead. When communication is required from the FIFO to outside of VPP, a TCP/UDP graph 

node implements a high-performance, user-space, host networking stack.  

 

Network researchers and innovators, due to VPP’s architecture, are free to experiment with 

alternate inter-host communication mechanisms such as RDMA and RINA to interoperate with 

the shared-memory communication library. In fact, the congestion-control mechanism of VPP’s 

TCP host-stack is designed to be modular, such that alternate implementations such as BBR 

can easily be integrated and tested. 

 

In short, VPP is as much a platform for communication/networking innovation, as it is a highly 

performant production ready data plane. 

VPP Use cases 

Virtual router or virtual switch 

VPP can be used as a fully featured high performance multi-layer virtual router and virtual 

switch. 

 

VPP can be deployed as an IPv4/IPv6 software router, delivering consistent throughput 

performance with large-scale lookup tables. VPP supports concurrent L2 switching, IP routing 

and a rich set of modern overlay tunneling encapsulations - GRE, VXLAN, L2TPv3, LISP-GPE. 

Combined with software and hardware based crypto support (IPSec, SSL), VPP’s cocktail of 

functionality, performance and scalability enables building large scale dynamic network overlay 
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designs for VPNs between sites and/or private/public Data Centers. And it can be run from the 

cloud - what more would you want? 

 

VPP is also crammed with many stateless and stateful security features - access lists, security 

groups and stateful ACLs. To facilitate dynamic Service Function Chaining, VPP supports IETF 

compliant SFC/NSH, as well as Segment Routing for IPv6. All enabling efficient and scalable 

creation of bespoke cloud network services. To check VPP applicability and suitability to your 

current or future use cases, see the VPP functional breakdown listed later in this document. 

 

A sample end-to-end Software Defined Cloud Network Service use case design, a cloud VPN, 

leveraging FD.io VPP software is depicted below. It places VPP vRouter network functions in 

Data Center servers, making them part of an encrypted overlay network (e.g. LISP-GPE, 

VXLAN) and connects remote sites and any cloud based network and application services.  

 

Orchestrating VPP is simple - VPP instances can run in Containers or VMs, so you can deploy 

the orchestration stack of your choice, as VPP is already integrated with a number of the stacks 

including OpenStack (networking-vpp), Kubernetes, and Docker. 

 

 
Figure 3. Fast Cloud Network Services – FD.io VPP Use Case Examples. 

 

 

  

Replacing a hardware router or switch 

VPP is a fully functional router, albeit with the expectation of an external control plane. It is 

possible to run VPP as a CPE or branch router or whatever location where a 1Tbps router is 

sufficient (quite a few, one would imagine). With configuration files or a small script, or with a 
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more fully fledged control plane, all the functions required to act as an IPv4 CPE (DHCP, NAT, 

Security groups) are already implemented. The main restriction is the network I/O of servers 

and not VPP. Commodity servers typically do not have a switching fabric, and you would be 

limited to the number of available network I/O and PCIe slots for networking devices. 

Network functions 

VPP supports a set of Virtual Network Functions (VNFs), be that one of the multitude of "IPv4 as 

a service" mechanisms (MAP-E, MAP-T, LW46, SIIT-DC), or the reverse, IPv6 as a service 

(6RD), Load-balancing, IPFIX/Netflow probe, NAT44 / CGN... 

 

VPP can be used in a VNF targeting Virtual Machine (VM), container, or bare metal 

deployments.  When used in a VM, the VPP-based VNF would typically connect over a vHost-

user interface, while in a container the new high speed shared memory interface, MemIf, can 

provide the connectivity. 

 

Multiple network functions can be implemented as nodes in a single VPP instance, or one can 

have a VPP container per function and chain them together with SFC / NSH, which are also 

supported. 

 

Of course the lowest overhead and highest performance is achieved by running VPP directly on 

bare metal. Taking one of the IPv4 as a service mechanisms as an example, these 

implementations can easily forward in the excess of 15-20 Gbps (IMIX), 12-17 Mpps (64B) per 

core on Intel® Xeon® processors (core frequency dependent of course) and can fill all available 

bandwidth in a system (hundreds of Gbps). 

 

New VNFs can be easily built as plugins. These can be incorporated in a more traditional router 

model, where packets pass through a FIB lookup, or one could make them a very simple "VNF 

on a stick", where frames are received on an interface, the frames are passed through some 

packet processing function and then dumped on the TX interface. 

 

VPP's plugin architecture lets the operator add new network functions to a VPP instance 

running on bare metal. For network centric infrastructure functions (e.g. network functions 

generating hundreds of gigabits of traffic per second) it makes sense to avoid the additional 

overhead and complexity of operating and isolating network functions in VMs or containers. 

Integrations 

FastDataStacks 

Any NFV solution stack is only as good as its foundation: the networking infrastructure. Key 

foundational assets for a NFV infrastructure are: 
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● The virtual forwarder: The virtual forwarder needs to be a feature-rich, high performance, 

highly scale virtual switch-router. It needs to leverage hardware accelerators when 

available and run in user space. In addition, it should be modular and easily extensible. 

● Forwarder diversity: A solution stack should support a variety of forwarders, hardware 

forwarders (physical switches and routers) as well as software forwarders. This way 

virtual and physical forwarding domains can be seamlessly glued together. 

● Policy driven connectivity: Business policies should determine the network level 

connectivity, rather than the other way around. Historically this has often been the other 

way around which quite often resulted in operational challenges. 

  

In order to meet these desired qualities of an NFV infrastructure, the OPNFV FastDataStacks 

project was started in spring 2016, shortly after the FD.io Linux Foundation collaborative project 

was launched. FastDataStacks set out to compose a variety of scenarios using FD.io as a 

foundation to create an NFV solution that is both fast and flexible. OPNFV runs NFV for real – 

which also means that a virtual forwarder has to supply multi-million packets per second 

forwarding capability – even, and especially, when integrated into a full stack solution. Simple 

software switches which are often found in cloud deployments with forwarding rates in the tens 

of thousands of packets per second don’t offer appropriate performance for NFV deployments. 

  

FastDataStacks scenarios are created with components from a set of open source projects. 

While performing the integration, FastDataStacks had to integrate and significantly evolve the 

functionality of different upstream components used, and evolve the automated installation and 

testing tools in OPNFV. FastDataStacks is a great example of OPNFV’s modus operandi: 

create, compose, deploy, test, iterate. 

  

The key ingredient for all these scenarios is the data-plane forwarding and control infrastructure 

supplied by FD.io, i.e. VPP and Honeycomb along with OpenStack as the VM manager. In 

addition, OpenDaylight as a network controller plays a key role in many of the scenarios built by 

FastDataStacks. 

  

The picture showcases typical key components in FastDataStacks: 

  

https://wiki.opnfv.org/display/fds
https://wiki.opnfv.org/display/fds
https://fd.io/
https://fd.io/
https://fd.io/
https://fd.io/
https://wiki.opnfv.org/display/fds
https://wiki.opnfv.org/display/fds
https://wiki.opnfv.org/display/fds
https://fd.io/
https://fd.io/
https://www.openstack.org/
https://www.openstack.org/
https://www.opendaylight.org/
https://www.opendaylight.org/
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Figure 4. OPNFV FastDataStacks Components. 

   

OPNFV Scenarios Built by FastDataStacks 

FastDataStacks builds a series of scenarios with a variety of features and functions, following 

the different needs of the market. These include for example: 

● OpenStack – VPP 

● OpenStack – OpenDaylight (Layer2) – Honeycomb – VPP 

● OpenStack – OpenDaylight (Layer3) – Honeycomb – VPP 

  

FastDataStacks scenarios are released once complete and fully tested. The first 

FastDataStacks scenario, termed “OpenStack – OpenDaylight (Layer2) – Honeycomb – VPP”, 

became available as part of the OPNFV Colorado 1.0 release in September 2016. With the 

OPNFV Danube release in 2017, it is for the first time that FastDataStacks introduces a 

scenario which leverages FD.io/VPP for all forwarding – within a tenant network, between 

tenant networks, as well as between tenants and external networks. VPP is used for Layer-2 

and Layer-3 networking, including the support for security groups, etc. making forwarding by 

legacy solutions such as the Linux Kernel or OVS superfluous. 
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All FastDataStacks scenarios continue to be enhanced as new capabilities mature in the 

upstream projects. Features like service function chaining (SFC), or IPv6, Gluon, etc. will 

naturally find their way into FastDataStacks. See also: FastDataStacks OPNFV project wiki and  

OPNFV FastDataStacks - Whitepaper  

OpenStack: networking-vpp  

In addition to the model for driving VPP via the OpenStack Neutron Modular Layer 2 (ML2) 

Driver for OpenDaylight, VPP supports a native integration with OpenStack and delivers 

required functions to operate a cloud environments as well as an NFV Infrastructure. It enables 

fast communications between VMs, fast forwarding within a tenant network and fast routing 

between tenants or external networks.  This integration is done through a Neutron driver called 

networking-vpp. 

 

Networking-vpp supports all key features required to run a production cloud: 

● flat/vlan networks 

● scalable overlay using LISP-GPE and layer 2 population 

● Security Groups, Port Security, Address pairs, RBAC 

● fast inter VM communication with vhost-user interfaces 

● Layer 3 agent: Floating IP, SNAT, IPv6 

 

While many Neutron drivers suffer from complex code and architecture making them complex to 

troubleshoot and operate, networking-vpp relies on few design principles: 

● Scalability: all states are maintained in a scalable key-value store cluster (etcd) 

● Simplicity: All communications are REST based, code is very compact 

● Availability: All communication are asynchronous, system tolerates machine failure 

 

The picture below illustrates the resulting architecture: 

 

 
Figure 5. OpenStack Networking-vpp Architecture. 

https://wiki.opnfv.org/display/fds
https://www.opnfv.org/wp-content/uploads/2016/12/OPNFV_FastDataStacks_121116.pdf
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Main components in this architecture are: 

● The mechanism driver which is in charge of implementing OpenStack Neutron ML2 API. 

All Neutron commands are put in a journaling system in order to support potential 

machine or communication failure. Any Create/Update/Delete (CRUD) operation results 

in a communication with the key value store 

● Etcd stores agent states as well as OpenStack “desired” states. 

● VPP Agents communicate with VPP using native Python API. Agents are running in a 

separate memory space from VPP. 

 

All communications between these three components are HTTP/JSON based. Etcd can enforce 

Role Based Access Control to isolate key-value operations per compute node and increase 

system security and resiliency. 

 

Networking-vpp takes advantage of the OpenStack CI for testing. In addition to that, more 

advanced testing scenario (including High Availability scenario) are executed in the frame of the 

OPNFV FastDataStack project. 

It supports OpenStack distributions installer such as DevStack or Redhat TripleO / APEX. 

Community update 

After the project was launched just over a year ago it has been very active. The FD.io project 

has the following supporting members: Cisco, Intel, Ericsson, 6WIND, Huawei, AT&T, Comcast, 

Cavium Networks, Red Hat, ZTE, Inocybe, Metaswitch and Netgate. 

 

Apart from the main VPP project, there are several adjacent projects under the FD.io umbrella: 

Honeycomb (ODL integration), CSIT (Integration testing and performance), NSH SFC, ONE 

(Overlay Network Engine), VPP Sandbox, TLDK, Package management, TRex, ICN 

(Information centric networking). 

 

The VPP project has had over 2000 commits from over 50 contributors over the last year and 

has done 5 releases. With a time-based release model, releasing about every 3 months. 

 

 
Figure 6. FD.io VPP Commit Distribution over Time. 
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Current functionality 
Table 1. FD.io VPP Functionality. 

Features Details 

Platforms x86, ARM, Power 

Interfaces DPDK, Netmap, AF_PACKET, Memif, TAP, vhost-user 

Linux distributions Ubuntu 14.04/16.04, CentOS 7, OpenSUSE 

API Bindings for C, Python, Lua, Java 

FIB Hierarchical FIB, VRFs,  

IPv4 ARP, ARP proxy, VRFs, ECMP, Source RPF 

IPv6 ND, ND proxy, VRFs, ECMP, Source RPF 

DHCP DHCPv4 client/server/relay, DHCPv6 relay, Option 82 / Remote-id 
support 

BFD IPv4, IPv6, BFD echo 

NSH  SFC SFF’s & NSH Proxy 

Security groups L2, L3, IPv6 extension headers, Stateful ACLs 

Tunnelling GRE/VXLAN/VXLAN-GPE/LISP-GPE/NSH/IPSEC 

MPLS MPLS VPNs, Tunnels 

Segment Routing SRv6 Traffic Engineering 
SRv6 LocalSIDs functions to support L3VPN and L2VPN use-cases 
Framework to expand SRv6 LocalSID functions with VPP plugins 

LISP xTR, RTR, multi-homing, multi-tenancy, L2 and NSH over LISP-GPE. 

Host stack UDP, TCP 

NAT NAPT, 1:1 mode, Multi-tenant, Deterministic CGN, Hairpinning, CPE 
mode, IPFIX 

Bridging VLAN Support, Single/Double tag, L2 forwarding w/EFP 
Bridging  
    Split-horizon group support/EFP Filtering 
    Bridge domains, ARP termination, IRB - BVI Support 
    Flooding, Input ACLs, MAC Learning 
Interface cross-connect 
L2 GRE over IPSec tunnels 
VTR – push/pop/Translate (1:1,1:2, 2:1, 2:2) 
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Netflow collection 

Monitoring Netflow/IPFIX, SPAN, Counters, Ganglia, Lawful Intercept 

Netflow/IPFIX Recording of L2, L3 and L4 information from L2 or L3 paths 

IPv4 as a service MAP-E, MAP-T, LW46, SIIT-DC BR 

QoS Policing 1R2C, 2R3C, color-blind, color-aware. 

IOAM (in-band 
OAM) 

In-band OAM for IPv6, NSH, VXLAN-GPE transport 
IOAM Telemetry export infra (raw IPFIX) 
 
SRv6 and IOAM co-existence 
IOAM proxy mode / caching (M-Anycast server solution) 
IOAM probe and responder (for fast failure detection/isolation) 

DPDK 17.02 

IPsec IKEv2, AES-GCM, CBC-SHA1 

 

Performance 

VPP superior data plane performance is one of its main claims to fame. But claims only get you 

thus far, so let’s look at some data points. A summary table lists key performance and resource 

efficiency metrics for selected data plane functionality: 

 

● Compute resources used: CPU core frequency, threads per core. 

● VPP non-drop rate throughput: 64B packets per second, IMIX gigabits per second 

● Efficiency indicators: clock cycles per packet, throughput speedup with multi-core multi-

threading configurations. 

 

In a nutshell - take 3.2 GHz Intel® Xeon® E5-2667 v4 (Broadwell) and you can drive Ethernet 

line at over 50 Gbps (IMIX) - with JUST ONE CPU CORE! You have an older computer with a 

tad slower 2.3 GHz Intel® Xeon® E5-2698 v3 (Haswell), you still can drive IPv4 routing at 36 

Gbps per core - not too shabby! 

 

Table below contains a sample listing of FD.io VPP data plane performance for different 

network functions, measured on different compute machines and reported by different labs 

involved in FD.io collaborative project.  

 

Performance is listed for the following VPP data plane network functions: 

▪ IPv4 Routing: IPv4 routing with 1M /32 routes, IPv4 header validations, IPv4 lookup per 

packet, L2 Ethernet header rewrite per packet. 
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▪ L2 Xconnect: L2 point-to-point switching with all Ethernet frame validations, no VLAN 

tag manipulations. 

▪ L2 MAC Switching: L2 multi-point switching with 100k MAC addresses, MAC learning 

and flooding. 

▪ IPv6 Routing: IPv6 routing with 0.5M /128 routes, IPv6 header validations, IPv6 lookup 

per packet, L2 Ethernet header rewrite per packet. 

▪ IPv4 IPSec AES-GCM: IPv6 routing with IPSec AES-GCM cipher, using Intel QAT 

IPSec hardware acceleration card. 

▪ CGNAT: carrier grade network address translation for IPv4 subscribers, 1k users, 15 

ports each. 

 
Table 2. FD.io VPP Data Plane Forwarding Performance – Benchmarking Data. 

VPP Data 
Plane 

Network 
Function1 

Core 
Freq 

[GHz]2 

Threads 
per Core 
[N=1..2]3 

Cycles 
per 

Packet4 

Pkt 
Thput 

per Core 
64B 

[Mpps]5 

BW per 
Core 
IMIX 

[Gbps]6 

Multi-Core 
Thput 

Speedup7 

Test 
Results 
Source8 

L2 Xconnect 2.2 2 115 19.1 57 Linear Intel labs 

L2 Xconnect 3.2 2 118 27.1 81 Linear Intel labs 

IPv4 Routing 2.2 2 180 12.2 36 Linear Intel labs 

IPv4 Routing 3.2 2 180 17.8 53 Linear Cisco 
labs, 
Intel labs 

IPv4 Routing 2.3 2 188 12.0 36 Linear Cisco 
labs 

                                                
1 All tests performed with VPP 17.04 release, source code: https://git.fd.io/vpp/tree/?h=stable/1704. 
2 Compute machines used with the following CPUs and associated core frequency (TurboBoost disabled): 
Intel® XEON® E5-2699v4 2.2GHz, Intel® XEON® E5-2667v4 3.2 GHz, Intel® XEON® E5-2698v3 2.3 
GHz (Cisco labs), Intel® XEON® E5-2699v3 2.3 GHz (FD.io CSIT).  
3 Tests done with either HyperThreading Enabled (with 2 threads per physical core) or with 
Hyperthreading Disabled (1 thread per physical core). 
4 Cycles per Packet (CPP) calculated using formula: CPP = ( core_frequency / 
packet_non_drop_thput_rate ); zero packet loss. 
5 Packet non-drop throughput rate (zero packet loss) per physical CPU core for 64B Ethernet frame size, 
reported in Millions packets/sec [Mpps]. 
6 Bandwidth throughput (zero packet loss) per physical CPU core for IMIX packet sequence, reported in 
Gigabits/sec [Gbps]. 
7 Multi-Core throughput speedup – measured or expected increase of throughput as a function of adding 
physical CPU cores within the same NUMA node. 
8 Listed results following labs benchmarking VPP: Intel labs, Cisco labs, Intel & Cisco labs executing 
same tests independently, FD.io CSIT labs numbers from CSIT rls1704 report, 
https://docs.fd.io/csit/rls1701/report/. 
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L2 MAC 
Switching 

2.2 2 212 10.4 31 Linear Intel labs 

L2 MAC 
Switching 

3.2 2 215 14.8 44 Linear Intel labs 

L2 MAC 
Switching 

2.3 2 221 10.4 31 Linear Cisco 
labs 

IPv6 Routing 2.3 2 243 9.5 28 Linear Cisco 
labs 

IPv4 Routing 2.3 1 242 9.5 28 Linear FD.io 
CSIT 

L2 MAC 
Switching 

2.3 1 228 10.1 30 Linear FD.io 
CSIT 

IPv6 Routing 2.3 1 307 7.5 22 Linear FD.io 
CSIT 

CGNAT44 2.3 1 359 6.9 20 Expected 
Linear 

FD.io 
CSIT 

IPv4 IPSec 
AES-GCM 

2.3 1 920 2.5 7 Linear up 
to HW limit 

FD.io 
CSIT 

 

We all like numbers, but how do these apply to the actual capacity sizing. With VPP it’s actually 

fairly straightforward - due to VPP data plane multi-threading design being not-locking, it 

provides a linear speedup once VPP threads run across multiple cores, as per table. In other 

words if more throughput capacity is needed use more cores, and multiply the per core 

throughput. This of course assumes no other bottlenecks in the compute systems - and for 

physical interface to interface (NIC to NIC) scenarios this works just fine, as indicated on the 

graphs below for IPv4 routing and L2 MAC switching. Results shown are from the same setup 

as listed in the table. 
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Figure 7. FD.io VPP Data Plane Forwarding Performance – Speedup with Multi-core Multi-threading. 

 

Now, imagine the network I/O bandwidth available per processor socket increasing, from 160 

Gbps available on the current Intel® Xeon® processors, to 280 Gbps offered by the new Intel® 

Xeon® Scalable processors. Imagine a 2RU server with four Intel® Xeon® Scalable processors, 

that’s 4x 280 Gbps in, and 4x 280 Gbps out. That’s enough I/O for FD.io VPP to process 

packets at the rates of One Terabit per Second in, and One Terabit Per Second out.  Welcome 

to a One Terabit Software Router. 

 

 
Figure 8. Increased Processor I/O Improves Packet Forwarding Rate per Socket. 
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When taken for a ride in Cisco labs with Intel® Reference Board “Neon-City”, FD.io VPP One 

Terabit Software Router performed well. The setup with total of four Intel® Xeon® Platinum 

8168 processors running FD.io VPP loaded with half a million of IPv4 /32 routes, was forwarding 

at the aggregate rate of 948 Gbps with 512B packets, and zero packet loss. Not all cores were 

used, and throughput was limited only by PCIe I/O slot layout on tested compute machines.  

 

A new dawn of high-speed cloud networking... 

 

 
Figure 9. Benchmarking FD.io VPP and Intel® Xeon® Scalable Processors - Setup. 

 
Figure 10. Benchmarking FD.io VPP and Intel® Xeon® Scalable Processors – Bandwidth Rate. 
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Figure 11. Benchmarking FD.io VPP and Intel® Xeon® Scalable Processors – Efficiency Improvements. 

 

Note that the measured performance was shy of the expected 4x 280 Gb/s rate only due to the 

lack of PCIe slots on the compute machines used, see specification below. 

 

The specifics for this benchmark: Two of Intel® Reference Boards “Neon-City”, each with 2x 

Intel® Xeon® Platinum 8168 Processors, Intel® C620 PCH, 384GB DDR4 2400 MT/s RDIMMs, 

3x FM10420 Intel® Ethernet cards, 3x XXV710 Intel® Ethernet Controllers, Ubuntu 17.04, VPP 

17.04.2. 

Intel® Xeon® Scalable Processor Family 

Intel® Xeon® Scalable processors are the 5th generation Intel® Xeon® processors with new 

Intel® Mesh Architecture. This processor offers significant performance combined with a rich 

feature set and cutting-edge technology to address a variety of workloads for optimum 

performance.   Some relevant examples of these workloads include Networking, 

Communication, Storage, Cloud, and Enterprise. 

 

Intel® Xeon® Scalable processors offer up to 28 cores and 50% more memory channels than 

the preceding generation, and new AVX-512 instruction which, when coupled with DPDK and 

network applications like FD.io VPP, offer significant performance improvements.  They also 

offer new and improved crypto and compression acceleration integration (in PCH), integrated 

Intel® Ethernet with up to 4x 10 GbE interfaces, and reduced total platform investment by 

converging application, control, and data plane workloads on one platform. 

  

Additional features include High Availability, Carrier Class reliability and long supply life, data 

security, reduced latency, Enhanced Platform Awareness for optimum resource management 

for NFV, high performance pattern recognition and high performance I/O. 
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Summary 

FD.io VPP is a software network data plane, a very efficient and flexible one. It consists of a set 

of forwarding nodes arranged in a directed graph and a supporting software framework. The 

framework has all the basic data structures, timers, drivers (and interfaces to driver kits like 

DPDK), a scheduler which allocates the CPU time between the graph nodes, performance and 

debugging tools, like counters and built-in packet trace. The latter allows you to capture the 

paths taken by the packets within the graph with high timestamp granularity, giving full insight 

into the processing on a per-packet level. 

 

FD.io VPP takes full advantage of the latest processor optimizations such as Vector Instructions 

(e.g. Intel® SSE, AVX) and direct interactions between I/O and CPU cache (e.g. Intel® DDIO), 

to deliver best in class packet processing performance. 

 

While you cannot expect a router with tens or hundreds of 100GbE ports and multi-terabit 

performance, we anticipate FD.io VPP running on an industry standard 2RU server built with 

new Intel® Xeon® Scalable processors, breaking the 1Tbps throughput boundary for the 

networking data plane. 
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